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Abstract  

The present study tested whether energy-minimizing behaviors evoke reward-related 
brain activity that promotes the repetition of these behaviors via reinforcement 
learning processes. Fifty-eight healthy young adults in a standing position performed 
a task where they could earn a reward either by sitting down or squatting while 
undergoing electroencephalographic (EEG) recording. Reward-prediction errors were 
quantified as the amplitude of the EEG-derived reward positivity. Results showed that 
reward positivity was larger on reward versus no reward trials, confirming the validity 
of our paradigm to measure evoked reward-related brain activity. However, results 
showed no evidence that sitting (vs. standing and squatting) trials led to larger reward 
positivity. Moreover, we found no evidence suggesting that this effect was moderated 
by typical physical activity, physical activity on the day of the study, or energy 
expenditure during the experiment. However, at the behavioral level, results showed 
that the probability of choosing the stimulus more likely to lead to sitting than 
standing increased as the number of trials increased. In addition, results revealed that 
the probability of changing the selected stimulus was higher when the previous trial 
was a stand trial relative to a sit trial. In sum, neural results showed no evidence 
supporting the theory that opportunities to minimize energy expenditure are 
rewarding. However, behavioral findings suggested participants tend to choose the less 
effortful behavioral alternative and were therefore consistent with the theory of effort 
minimization (TEMPA). 
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Imagine your supervisor calls you to their office to 

give you a bonus check. Upon learning that you earned the 

reward, would its value change if you knew you had to walk 

several flights of stairs as opposed to being able to take an 

elevator ride, equal in time, to retrieve it? The answer to this 

question has implications for one’s level of physical 

activity. Most individuals are now cognizant of the positive 

effects of regular physical activity and have the intention to 

be active (Martin, Morrow, Jackson, & Dunn, 2000; 

Canadian Fitness and Lifestyle Research Institute, 2008). 

Yet, this intention is often not sufficient to engage in 

physical activity (Rhodes & Dickau, 2012). A recent study 

involving 1.9 million participants showed that more than a 

quarter of all adults are physically inactive, which 

extrapolates to more than 1.4 billion adults when 

considering the world population (Guthold, Stevens, Riley, 

& Bull, 2018). Some other results are even more 

concerning, especially in the United States, where more 

than 95% of adults fail to accumulate the recommended 30 

minutes of moderate-to-vigorous physical activity on at 

least 5 days per week (Troiano et al., 2008). This high 

prevalence is concerning because physical inactivity 

involves higher risks of cardiovascular disease (Wahid et 

al., 2016), hypertension (Liu et al., 2017), diabetes (Aune, 

Norat, Leitzmann, Tonstad, & Vatten, 2015), cancer 

(Moore et al., 2016), depression (Schuch et al., 2017; 

Boisgontier et al., 2020), obesity (Bleich, Vercammen, 

Zatz, Frelier, Ebbeling, & Peeters, 2018), and mortality 

(Ekelund et al., 2019) with 6 to 10% of all deaths from non-

communicable diseases worldwide attributed to physical 

inactivity (Lee et al., 2012). 

 

It has been speculated that this failure to be 

physically active may be explained by automatic reactions 

toward stimuli that are related to physical activity behaviors 

(Conroy and Berry, 2017). These automatic reactions may 

disrupt the implementation of behavioral goals grounded in 

reflective motivation (Strack & Deutsch, 2004). 

Experimental studies testing these automatic reactions 

show that stimuli related to physical activity automatically 

attract attention (Berry, 2006; Berry, Spence, & Stolp, 

2011; Calitri, Lowe, Eves, & Bennett, 2011; Cheval et al., 

2020c), and trigger automatic affective reactions (Bluemke, 

Brand, Schweizer, & Kahlert, 2010; Conroy, Hyde, 

Doerksen, & Ribeiro, 2010; Rebar, Ram, & Conroy, 2015) 

as well as approach tendencies (Cheval, Sarrazin, & 

Pelletier, 2014; Cheval, Sarrazin, Isoard-Gautheur, Radel, 

& Friese, 2015; Cheval, Sarrazin, Boisgontier, & Radel, 

2017; Cheval et al., 2018b; Farajzadeh et al., 2023). These 

effects are stronger in active individuals, but inactive 

individuals generally demonstrate similar positive 

automatic reactions toward physical activity. Taken 

together, these results suggest that automatic reactions can 

support physical activity behaviors in both active and 

inactive individuals, which contrasts with the current 

pandemic of physical inactivity (Kohl 3rd et al., 2012). 

These results also suggest that automatic reactions toward 

physical activity can hardly explain this pandemic. 

 

The recent theory of effort minimization in 

physical activity (TEMPA) suggests that an automatic 

attraction toward behaviors minimizing energetic cost, 

which may be inherently rewarding, could explain the 

inability to transform intentions to be physically active into 

actions (Cheval et al., 2018a; Cheval & Boisgontier, 2021). 

The repeated failure in counteracting this automatic 

attraction may partly explain the pandemic of physical 

inactivity (Boisgontier & Iversen, 2020). A positive bias 

toward lower energy expenditure has been evidenced in 

decision-making and learning tasks (Klein-Flügge, 

Kennerley, Friston, & Bestmann, 2016; Palidis & Gribble, 

2020; Prévost, Pessiglione, Météreau, Cléry-Melin, & 

Dreher, 2010; Skvortsova, Palminteri, & Pessiglione, 

2014). In the study by Klein-Flügge et al. (2016), 

participants were asked to make a series of choices between 

two options, which independently varied in required grip 

force and reward magnitude. The monetary reward ranged 

from 10 to 40 pence and required effort ranged from 20% 

to 80% of maximum grip force. Similarly, Skvortsova et al. 

(2014) used a probabilistic instrumental learning task with 

binary choices (left or right) and four possible outcomes: 

two reward levels (20¢ or 10¢) times two effort levels (80% 

and 20% of maximal force). Participants were encouraged 

to accumulate as much money as possible and to avoid 

making unnecessary effort. In the study by Palidis and 

Gribble (2020), participants made binary choices that 

probabilistically affected whether they were asked to 

accurately produce a low or high level of quadriceps 

activation to earn a reward. Electroencephalographic (EEG) 

activity time-locked to feedback about whether they earned 

the reward for accurate force production was assessed. 

Results showed participants were more likely to change 

their response from the previous trial if it led to high effort. 

Results also showed that reward-related brain activity was 

greater when participants received reward feedback on high 

effort trials. These results are consistent with findings 

showing individuals learn to make decisions to avoid high 

physical effort but, paradoxically, value rewards obtained 

with high effort more than those obtained with low effort 

(Inzlicht, Shenhav, & Olivola, 2018). In the study by 

Prévost et al. (2010), participants decided whether it was 

worth investing in a stronger effort using a hand grip to see 

an erotic picture clearly for 3 s or to invest in a small effort 

to see the picture for 1 s. These four studies showed that 

during choices involving monetary or erotic reward and 

physical effort the brain serves as a choice comparator for 
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effort-reward trade-offs (Klein-Flügge et al., 2016) with 

behaviors associated with higher physical effort being 

avoided (Paladis & Gribble, 2020) and devalued (Prévost et 

al., 2010; Skvortsova et al., 2014). In line with the theory of 

effort minimization, experimental results suggest that a 

high tendency to approach stimuli related to sedentary 

behaviors can contribute to explain the gap between 

intentions to be physically active and actual physical 

activity (Cheval et al., 2015). Other results suggest 

sedentary stimuli require more inhibitory control to avoid 

relative to physical activity stimuli (Cheval et al., 2020a) 

and that avoiding sedentary stimuli requires higher brain 

activity linked to inhibitory control and conflict monitoring 

than approaching sedentary stimuli (Cheval et al., 2018b). 

These results are consistent with the notion that such stimuli 

are attractive and, thus, difficult to avoid. Finally, 

epidemiological research shows that declines in cognitive 

functioning, which may be necessary to avoid sedentary 

stimuli, precede declines in physical activity (Cheval et al., 

2020c). 

 

An untested corollary from the theory of effort 

minimization is that energy-minimizing behaviors elicit 

reward-related brain activity that promotes the repetition of 

such behaviors via reinforcement learning processes 

(Rescorla & Wagner, 1972; Sutton & Barto, 1998). One of 

the crucial processes underlying reinforcement learning is 

the brain’s computation of positive and negative reward-

prediction errors, which represent the degrees to which 

actual outcomes are better or worse than expected, 

respectively. Positive reward-prediction errors act as 

signals within the brain to increase the value of decisions 

and actions that led to the errors, thus ‘stamping in’ such 

decisions and actions. Conversely, negative reward-

prediction errors act as signals within the brain to decrease 

the value of decisions and actions that led to the errors, thus 

‘stamping out’ such decisions and actions. Reward-

prediction errors in humans can be quantified using the 

reward positivity component of the event-related potential 

(ERP) derived from the EEG (Krigolson, 2018; Proudfit, 

2015; Sambrook & Goslin, 2015). The reward positivity 

manifests as a positive deflection in the ERP 250 – 350 ms 

following rewarding feedback and is maximal at midline 

frontocentral electrode sites. Based on the theory of effort 

minimization and reinforcement learning theory, 

experiencing a positive reward-prediction error from taking 

the elevator or a negative reward-prediction error from 

taking the stairs should reinforce behaviors that optimize 

opportunities to take the former, such as choosing to enter a 

building through a specific door known to have easy access 

to an elevator. 

 

In the present research, we tested hypotheses 

consistent with the theory of effort minimization in physical 

activity (Cheval et al., 2018a; Cheval & Boisgontier, 2021) 

and reinforcement learning theory (Rescorla & Wagner, 

1972; Sutton & Barto, 1998). Specifically, participants 

performed a doors task inspired by Hassall, Hajcak, and 

Krigolson (2019) and crossed with a movement-incentive 

delay task (Cheval, Boisgontier, Bacelar, Feiss, & Miller, 

2019), both of which have been used to study reinforcement 

learning brain activity (i.e., reward positivity). On each trial, 

participants in a standing position chose one of two stimuli 

(“doors”) on the screen. Following this choice, they were 

first informed whether they had to sit down and squat, 

should they earn a reward on the trial. Next, participants 

were informed whether they earned the reward or not. If 

they earned the reward, they had to retrieve it by 

implementing the behavior indicated in the first step (i.e., 

sitting down or squatting and returning to the standing 

position). Unbeknownst to participants, both doors were 

equally likely to lead to a reward, but one door was 

programmed to lead to an opportunity to sit 3.5 times more 

often than the other door. As such, since choices were 

unrelated to the probability of receiving a reward, we could 

test whether participants learned to make choices based on 

the likelihood of sitting. 

 

Our primary hypothesis was that opportunities to 

sit lead to more positive reward-prediction errors, as 

expressed by a larger reward positivity (H1). To test this 

hypothesis, we examined whether the opportunity to sit 

versus stand (Trial Type) and the presence of absence of 

reward (Reward) was associated with reward positivity 

amplitude and whether these variables interacted with each 

other (Trial Type x Reward). This hypothesis followed 

directly from the theory of effort minimization’s prediction 

that opportunities to minimize energy expenditure are 

rewarding. We also investigated whether the effect of 

opportunities to sit tested in H1 was moderated by factors 

related to energy expenditure. Specifically, we 

hypothesized that the effect was larger in participants who 

were typically less physically active (H2.1), in participants 

who were physically active on the day of the experiment 

prior to the experiment (H2.2), and after energetically 

demanding behavior (i.e., squatting) during the experiment 

(H2.3). These predictions followed from the theory of effort 

minimization’s contention that opportunities to minimize 

energy expenditure are particularly rewarding for 

individuals who are typically physically inactive, and that 

the reward of effort minimization increases when an 

individual spends energy. A third hypothesis was that the 

probability of choosing the stimulus more likely to lead to 

sitting than standing increased together with the increase in 

trials (H3). This followed from the theory of effort 

minimization’s claim that opportunities to minimize energy 

expenditure are rewarding, and reinforcement learning 

theory’s claim that decisions that lead to rewards are 
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repeated. Finally, our fourth hypothesis was that reward 

positivity predicted subsequent decisions about whether 

one chooses the same or a different stimulus. Consistent 

with reinforcement learning theory, we hypothesized that a 

large positive reward-prediction error reinforced the 

decision that led to it (i.e., the participant should choose the 

same stimulus) (H4). This experiment was conducted as a 

registered report, and the approved protocol (stage 1 of the 

registered report) can be found at https://osf.io/tcr7f (Miller 

et al., 2021). 

 

Methods 

Population 

Adults 19 to 40 years of age were recruited from 

the College of Education Research Participant Pool at 

Auburn University (USA) and by word-of-mouth to 

participate in the study in exchange for course credit, if 

applicable. This demographic was convenient to the 

investigators and had been used in similar studies (e.g., 

Cheval et al., 2019). To be included in the study, 

participants had to report an absence of physical 

impairment and disabilities that would make repeatedly 

standing and sitting difficult (yes vs. no), an absence of skin 

allergies or sensitivity to lotions or cosmetics, and an 

absence of neurological impairment. 

 

Sample Size Calculation 

To estimate the sample size required for 

sufficient power (90%) with an alpha level lowered to 

2%, we focused on the linear mixed-effects model 

(MEM) used to test H1, our primary hypothesis. In 

general, sample size calculation is difficult and sensitive 

since it depends on the values of all (fixed and random) 

parameters. However, in a fully balanced case, such as 

the current design (40 trials per trial type/reward 

combination [condition]), repeated-measures ANOVA 

and linear MEM will be nearly identical. For repeated-

measures ANOVA, we know the main effects and 

interaction tests will be independent; the distribution 

under the alternative hypothesis is a non-central F with 

non-centrality parameter: 

𝜆 =
𝑛 ∑ ∑ 𝛽𝑗𝑘;interest

22
𝑘=1

2
𝑗=1

1
𝑅 𝜎𝜀

2 + 2𝜎𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡
2

 

where “interest” corresponds either to the main effect of 

trial type and, thus, 𝛽1 and 𝜎1
2, to the main effect of reward 

and, thus, 𝛽2  and 𝜎2
2 , or to the Trial Type x Reward 

interaction and, thus, 𝛽3  and 𝜎3
2 . R is the number of 

repetitions per participant and per condition. Based on H1, 

our primary hypothesis, our effect of interest is the Trial 

Type × Reward interaction. Our pilot data results showed a 

Cohen’s f = .516 (see 3.2 Pilot Results). However, we 

decided to use a more conservative f = .25, representing a 

medium effect size (Cohen, 1962), because pilot study 

results are unlikely to yield accurate estimates of effect sizes 

(Albers & Lakens, 2018). An f = .25, where 𝑓 = √𝜆/𝑛 , 

implies that β should be equal to 0.25 times the squared root 

of the denominator in the definition of 𝜆. To take realistic 

values, we based our values on the pilot study and used R = 

34, 𝜎𝜀
2 = 108 , and 𝜎𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

2 = 2.5 . This implies a value 

for βs of .715. To ensure this approach was also valid for 

linear MEM for our design, we ran simulation studies that 

showed, as in repeated-measures ANOVA, that the main 

effects and the interaction tests would be independent and, 

for example, the power for 𝛽1  depends only on 𝜎1
2  (the 

variance of 𝑢1j ) and 𝜎𝜀
2 . The values of 𝜎2

2  and 𝜎3
2  have 

almost no influence on this power. The power is guided by 

𝜆 , as defined above. To evaluate the power for different 

sample sizes, we ran a MEM Monte Carlo simulation based 

on the model planned to address H1 with 500 samples of 

each size and with the above values. It was accomplished 

with the lmer R functions and simulated from the lme4 

package. With these settings, for all effects, with α = .02, 

the number of participants needed to detect a medium effect 

size was ≥ 56. Based on the pilot study where 1 of 9 

participants had a poor EEG recording, we expected poor 

EEG recordings from 11.11% of participants. Therefore, 

we recruited 64 participants but ensured that we had quality 

data in a sufficient number of trials (n ≥ 20 condition; 

Marco-Pallares, Cucurell, Münte, Strien, & Rodriguez-

Fornells, 2011) from at least 56 participants.  

For the first secondary analysis (H2), the same 

reasoning and computations as the ones used for H1 was 

made for all effects and, with α = .02, the number of 

participants needed to detect a medium effect size was also 

≥ 56. Power calculation for secondary analyses addressing 

H3 and H4 was attempted but not completed because the 

calculations failed to yield reliable results, possibly due to 

the increased complexity of the models. 

 

Experimental setup 

Each trial of the task began with the participant 

standing and facing a table upon which was a computer 

monitor, approximately eye level to the participant (Figure 

1). There was a blue container holding plastic coins next to 

the monitor and approximately arm-level with the 

participant when standing. A foldup butterfly chair was 

https://osf.io/tcr7f
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positioned immediately behind the participant. Another 

blue container holding plastic coins and an empty red 

(collection) container were positioned next to the chair and 

approximately arm-level with the participant when seated. 

A recording device (e.g., iPAD) was positioned on the 

ground facing the participant’s legs. Participants were told 

their lower body movements was recorded to confirm that 

they were standing as still as possible, which they were 

instructed to do to facilitate EEG recording. The participant 

held a wireless game controller throughout the experiment. 

 

 
 

Figure 1. Experimental Setup. The participants used a game 

controller to respond to stimuli on a computer monitor. They 

had the opportunity to win plastic coins from the blue container 

at arm-level while standing or the blue container at arm-level 

while seated, based on probabilistic learning and chance. The 

participant deposited the coins won in the red container. 

 

Experimental setup 

Data were collected at a single testing site. 

Participants’ height and weight was measured with a 

stadiometer and scale. They were asked to rate how fatigued 

they felt using the Multidimensional Fatigue Inventory 

(Smets, Garssen, Bonke, & De Haes, 1995) and three 

custom items (see Appendix B) prior to starting the task. 

Participants began each trial standing and were prompted to 

hit a game controller button to start the trial (Figure 2). Next 

the participant saw two squares (or “doors”) appear on the 

computer monitor, one to the left and one to the right. One 

of the squares was burnt orange (RGB: 205, 85, 0) and one 

was navy blue (RGB: 0, 0, 128). The color of the square 

appearing on the left or right varied randomly with equal 

probability. Participants were instructed to select one of the 

squares by pressing the game controller button 

corresponding with the side of the monitor containing their 

square of choice (i.e., the left button if the square they 

choose is on the left side, and the right button if the square 

they choose is on the right side). After a choice was made, 

a fixation cross appeared for 300 – 500 ms followed by a 

stimulus depicting two lines, an upper line and a lower line, 

with a container depicted upon one of the lines. If the 

container was upon the upper line (stand trial), it indicated 

that, if the participant earned a reward on the trial, it would 

result in them retrieving coins from the upper blue container 

that was arm-level when standing. If the container was upon 

the lower line (sit trial), it indicated that, if the participant 

earned a reward on the trial, it would result in them 

retrieving coins from the lower blue container that was arm-

level when sitting. The lines and container stimuli remained 

on the monitor for 2000 ms and were followed by a fixation 

cross for 300 – 500 ms. Next, participants saw a feedback 

stimulus informing them whether they earned the reward or 

not. They either saw a “$” sign for 1000 ms indicating that 

they earned a reward, or a “0” for 1000 ms if they did not. 

Then, participants saw the word “WAIT” appear on the 

monitor for 3000 ms. Then, on stand reward trials, 

participants heard a tone indicating that they should take a 

coin from the upper container, squat to touch their butt to 

the chair while placing the coin in the red collection 

container, then return to a standing position. This process 

was repeated after a 6000 ms interval before the next tone, 

until a total of 5 coins had been retrieved. On sit reward 

trials, participants sat down in the chair upon hearing the 

tone and took a coin from the lower container, then placed 

the coin in the red collection container. The participant 

remained seated until the next tone, at which time they 

retrieved another coin from the lower container by simply 

reaching into the container. This process was repeated until 

the participant retrieved five coins in total. Participants were 

told to remain seated after retrieving the fifth coin until 

prompted to start the next trial. 

 

On no-reward trials (“0” sign), participants 

remained standing for 30 s, irrespective of the information 

provided to them in the first step (i.e., sit vs. stand trial). 

Thus, participants should have set expectations about 

whether they would sit or squat to retrieve coins in the first 

step, then compute a reward-prediction error based on the 

feedback stimulus (“$” vs. “0”) in the second step, which 

informed them whether they indeed sat or squatted to 

retrieve coins. 

 

Prior to starting the task, participants were told that 

each coin represents a raffle ticket to win $10 [USD]; the 

more coins they earned, the more likely they were to win 

$10; on each trial, a certain color square gave them a certain 

probability of winning, so they should focus on choosing a 

square based on color; and there was no strategy for 

selecting a color square to win. Please see Appendix A for 

complete instructions that were given to the participants. 

Unbeknownst to participants, each color square had a 50% 

probability of resulting in a reward on each trial, but one 

square had a 70% chance of resulting in a sit trial, whereas 

the other square had a 20% chance of resulting in a sit trial. 

This procedure allowed to test whether participants began 
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to choose the square more likely to minimize effort (H3) 

while avoiding having them choose a square based on its 

likelihood of resulting in a reward (coins). Through 

preliminary pilot testing, we established that these 

probabilities should lead to at least n = 25 of each trial type 

(sit reward, sit no-reward, stand reward, stand no-reward), 

which past research has revealed leads to a reliable reward 

positivity (Marco-Pallares et al., 2011). The median and 

minimum number of trials per condition and dependability 

(reliability) are reported for both the pilot and main study 

(Table 1). Reliability was obtained using generalizability 

theory (Carbine, Clayson, Baldwin, LeCheminant, & 

Larson, 2021; Clayson & Miller, 2017b), and using the ERP 

reliability analysis toolbox implemented in Matlab software 

(Clayson & Miller, 2017a, 2017b). We used reliability to 

contextualize results from our primary experiment 

(reliability is associated with standard error of measurement 

and effect size; Clayson & Miller, 2017) and inform future 

research (e.g., how many trials per condition researchers 

should try to obtain). 

 

The color square with the higher probability of 

resulting in a sit trial varied randomly between participants. 

Participants completed a total of 160 trials, which took 

about 110 min. Participants were given breaks 

approximately every 22 min and remained standing during 

the breaks. 

 
Figure 2. Experimental protocol and stimuli. There were 

four types of trials, each of which began with the participant 

standing. For each participant, one of the colored squares had a 

70% chance of resulting in a sit trial and the other square had a 

20% chance of resulting in a sit trial. Each square and each type 

of trial had a 50% chance of resulting in a reward, which 

determined whether the behavior had to be performed or not. 

 

After finishing the task, participants completed 

questionnaires. The Borg scale (Borg, 1982) was used to 

rate the perceived level of exertion they typically 

experienced when retrieving coins and waiting for the next 

trial from the sitting vs. standing position. Participants were 

asked whether they preferred to retrieve coins by sitting or 

standing. The custom fatigue questions were asked again 

(Appendix B). The International Physical Activity 

Questionnaire (IPAQ) (Craig et al., 2003) was used to 

assess the level of energy expenditure during a typical week 

and on the current day. Dependence on exercise was 

assessed with the Exercise Dependence Scale-21 

(Hausenblas & Symons Downs, 2002) and their affective 

attitudes toward exercise were also assessed (Courneya & 

Bobick, 2000). Participants provided information related to 

handedness (Oldfield, 1971). Finally, participants were 

informed that one of the squares was more likely to result 

in stand trials and asked to rate their awareness of this 

manipulation of likelihood on a 0 (“not aware at all”) to 10 

(“fully aware”) scale. 

 

EEG recording and signal processing 

Scalp EEG was collected from a BrainVision 

actiCAP system (Brain Products GmbH, Munich, 

Germany) labeled in accord with an extended international 

10-20 system (Oostenveld & Praamstra, 2001) and sampled 

at 250 Hz. Data were collected from the following 

electrodes: FP1, FP2, F3, Fz, F4, FC3, FCz, FC4, C3, Cz, 

C4, CP3, CPz, CP4, P3, Pz, and P4. EEG data were 

referenced online to the left earlobe and a common ground 

was employed at the FPz electrode site. Electrode 

impedances were maintained below 25 kΩ throughout the 

study and a high-pass filter was set at 0.016 Hz. The EEG 

signal was transmitted via the BrainVision wireless MOVE 

add-on (Brain Products GmbH) to a BrainAmp DC 

amplifier (Brain Products GmbH) that amplified and 

digitized the signal. The amplifier was linked to a computer 

running BrainVision Recorder software (Brain Products 

GmbH) that recorded the signal. EEG data processing was 

conducted with BrainVision Analyzer 2.2 software. Data 

was visually inspected to determine whether any electrode 

needed to be interpolated, for example due to recording 

failure (e.g., 1-s or longer periods of voltage changing by 

less than 0.5 µV) and/or electrical noise (e.g., sharp changes 

in voltage of more than 200 µV). Next, data were re-

referenced to an average ears montage. Then, data were 

prepared for independent component analysis (ICA) 

cleaning. First, a 1 – 40 Hz band-pass filter with 4th order 

roll-offs and a 60 Hz notch filter was applied. Next, data 

were visually inspected and non-stereotypical artifacts were 

marked. Then, an ICA was conducted to identify 

stereotypical artifacts, such as blinks and saccades. We 

identified stereotypical artifacts, such as blinks and 

saccades, by looking for components that exhibited 

relatively sharp changes in frontopolar voltage (e.g., more 

than 200 µV) that decreased in amplitude from anterior to 

posterior electrode sites (blinks), or exhibited broad 

frontopolar changes in voltage (e.g., more than 200 µV) that 

were larger in a hemisphere than in the other hemisphere 

and decreased in amplitude from anterior to posterior 
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electrode sites (saccades). This ICA was applied to the 

unfiltered data to remove identified artifacts. This cleaned 

data was band-passed filtered between 0.1 and 30 Hz with 

4th order roll-offs, and a 60 Hz notch filter was applied.  

 

Measures 

Reward-prediction errors: "Reward Positivity” 

The reward positivity was extracted from an epoch 

beginning 200 ms prior to the onset of the feedback 

stimulus, indicating whether the participant earned the 

reward or not, and ending 800 ms after this stimulus. Then, 

the epoch was baseline corrected with respect to the pre-

stimulus interval (-200 – 0 ms). Next, epochs containing a 

change of more than 50 µV from one data point to the next, 

a change of 100 µV within a moving 200-ms window, or a 

change of less than 0.5 µV within a moving 200-ms 

window in any of the midline electrodes (Fz, FCz, Cz, CPz, 

and Pz) were excluded from subsequent analysis. Next, we 

determined the time window for reward positivity 

quantification. Specifically, epochs time-locked to reward 

feedback were averaged separately for reward and no-

reward trials. Then, the average of the no-reward feedback 

epochs was subtracted from the average of the reward 

feedback epochs to create a difference wave for each 

participant. In our pilot data, difference waves exhibited 

substantial interindividual variability in reward positivity 

peak latency (the positive peak 230 – 350 ms after feedback 

onset). Thus, we adaptively centered each participant’s 

reward positivity time window (length = 40 ms) on their 

reward positivity peak latency at the electrode at which it 

peaked (Fz, FCz, or Cz) (Clayson, Baldwin, & Larson, 

2013). We also confirmed that this window included a 

negative deflection in the no-reward feedback waveforms 

(Krigolson, 2018). If it did not, we centered the window on 

the maximal negativity between 230 and 350 ms in the no-

reward feedback waveforms. Of note, we originally 

planned to identify each participant’s reward positivity 

between 250 and 350 ms, but, after collecting data from 9 

participants, we noticed that the reward positivity was 

peaking as early as 230 ms. Thus, we consulted the editorial 

team and were advised to adjust our reward positivity 

window to 230 – 350 ms and conduct sensitivity analyses 

with the original time window. Then, we computed mean 

amplitude in each participant’s time window at Fz, FCz, 

and Cz for each epoch (i.e., the non-averaged data) and then 

averaged across these electrodes. That is, the mean 

amplitude, pooled across Fz, FCz, and Cz, in each 

participant’s reward positivity time window for each trial 
served as the reward positivity. If one of the electrodes 

malfunctioned during recording, it was not included in the 

average. Finally, since the reward positivity exhibited an 

unexpected posterior scalp distribution (i.e., maximal 

voltage at electrode CPz or Pz), we quantified the 

component by averaging across electrodes Cz, CPz, and Pz, 

and submitted this reward positivity to a sensitivity 

analysis. 

 

Energy expenditure 

The typical level of energy expenditure was 

assessed using the IPAQ (Craig et al., 2003) assessing 

moderate-to-vigorous physical activity undertaken during a 

typical week (“typical MVPA”). Typical MVPA was 

computed using the Metabolic Equivalent of Task (MET) 

associated with moderate (6 METs) and vigorous physical 

activity (8 METs) (IPAQ Research Committee, 2005). 

Specifically, based on the IPAQ protocol, the formula we 

used was: Typical MVPA in MET minutes per week = 4.0 

x minutes of moderate physical activity per week + 8.0 x 

minutes of vigorous physical activity per week (IPAQ 

Research Committee, 2005). The level of energy 

expenditure prior to the experiment on the day of the 

experiment (“today MVPA”) was also assessed using the 

IPAQ assessing moderate-vigorous physical activity in 

MET-minutes. Finally, the level of energy expenditure 

during the experiment (“study energy expenditure”) was 

computed by summing the METs spent on each trial up to 

the current trial. To compute the energy expended on each 

trial, we considered the actions performed during the trial 

and the time spent performing these actions. Specifically, 

participants spent 28 s standing on sit/stand no-reward 

trials; 26 s sitting down and 2 s squatting (sitting down to 

retrieve coins and standing up to begin the next trial) on sit 

reward trials; and 12 s squatting and 16 s standing on stand 

reward trials. 1.50 MET was assigned for sitting; 1.75 MET 

was assigned for standing; and 4 METs was assigned for 

squatting, which we consider moderate-intensity exercise 

(Mansoubi et al., 2015). After converting METs from min 

to s, the trial types were determined to have the following 

energy expenditure: sit reward trial = 1.30 MET; sit/stand 

no-reward trial = 1.36 MET; and stand reward trial = 2.11 

METs. 

Behavioral measures 

The first behavioral measure was the stimulus 

participants chose on each trial (“stimulus chosen”), which 

was either the stimulus with the higher or lower probability 

of resulting in a sit trial. The second behavioral measure 

was whether a participant changed their response (what 

stimulus they chose) from the previous trial (“changed 

response”). 
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Statistics 

The first Factors, designs, and formal tests used to 

investigate the hypotheses are summarized in Supplemental 

Table 1. If a variable was not normally distributed, as tested 

by the Shapiro-Wilk normality test, the variable was 

normalized using the Box–Cox transformation (Box and 

Cox 1964), which represents a family of power 

transformations that incorporates and extends the 

traditional methods (e.g., square root, log, inverse) to find 

the optimal normalizing transformation for each variable. 

As such, Box-Cox represents a potential best practice to 

normalize data (Osborne, 2010). 

 

MEMs were used to test the hypotheses. The 

mixed-effect approach provides a type I error rate that 

corresponds to its expected level (Boisgontier & Cheval, 

2016; Lachaud & Renaud, 2011) and is useful when 

modeling effects predicted to change over time (e.g., H3; 

Lohse, Shen, & Kozlowski, 2020). In several research 

fields, the use of MEM is promoted as a better alternative 

than traditional statistical models (Boisgontier & Cheval, 

2016). Unlike traditional approaches (e.g., ANOVA), 

which require averaging trials within each condition, MEM 

preserve all the information (i.e., for each participant, these 

models keep the variability of the responses within each 

condition). Therefore, the number of data points in the 

model increases, which contains type I error rate without 

compromising the power (Judd, Westfall, & Kenny, 2012). 

The MEMs were built and fit by maximum likelihood in R 

using the lme4 and lmerTest packages and p-values were 

approximated using the Satterthwaite's method (Bates, 

Mächler, Bolker, & Walker, 2015; Kuznetsova, Brockhoff, 

& Christensen, 2016; R Core Team, 2019). An estimate of 

the effect size of the fixed effects was reported using the 

marginal pseudo R2 computed with the MuMIn package 

(Barton, 2018). Statistical assumptions associated with 

MEMs (normality of the residuals, homogeneity of 

variance, linearity, multicollinearity exclusion, and control 

of undue influence) were checked for all models. If some 

observations exerted undue influence on the model 

estimation (i.e., outliers), the models were tested with and 

without them to ensure results’ robustness. Alpha was set to 

.02 for all analyses. To interpret significant interactions, 

simple-effect analyses were conducted. 

Primary Analyses 

H1 was tested with the following linear MEM: 

 
𝑹𝒆𝒘𝒂𝒓𝒅 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚𝒊𝒋 =  

 

(1) 

(𝜷𝟎 + 𝒖𝟎𝐣)

+ (𝜷𝟏 + 𝒖𝟏𝐣)𝑻𝒓𝒊𝒂𝒍 𝑻𝒚𝒑𝒆 (𝒔𝒕𝒂𝒏𝒅 𝒗𝒔. 𝒔𝒊𝒕)𝒊𝒋

+ (𝜷𝟐

+ 𝒖𝟐𝐣)𝑹𝒆𝒘𝒂𝒓𝒅 (𝒏𝒐 𝒓𝒆𝒘𝒂𝒓𝒅 𝒗𝒔. 𝒓𝒆𝒘𝒂𝒓𝒅)𝒊𝒋

+ 𝜷𝟑 𝑻𝒓𝒊𝒂𝒍 𝑻𝒚𝒑𝒆𝒊𝒋 × 𝑹𝒆𝒘𝒂𝒓𝒅𝒊𝒋 + 𝝐𝒊𝒋 

 

where 𝑅𝑒𝑤𝑎𝑟𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗  is the participant’s reward 

positivity in condition i, 𝛽0  to 𝛽3  are the fixed effect 

coefficients, 𝑢0j  to 𝑢2j  are the random effects for 

participant j (random intercepts and slopes), 

𝜖𝑖𝑗  is the error term, 𝑢1j , 𝑢2j  and 𝜖𝑖𝑗   are Gaussian and 

independent.  

To test H1, we checked and ensured that reward positivity 

was larger on reward versus no reward trials as this 

condition must be satisfied to demonstrate the presence of 

a reward positivity that could potentially be moderated by 

other factors, such as trial type. 

Sensitivity Analyses 

As mentioned in section 2.6.1, a sensitivity 

analysis was conducted with the window centered on the 

maximal negativity between 250 and 350 ms in the no-

reward feedback waveforms. In addition, a sensitivity 

analysis was conducted with reward positivity averaged 

across electrodes Cz, CPz, and Pz (and centered on a peak 

between 230 and 350 ms). 

Secondary Analyses 

H2.1, H2.2, and H2.3 were tested with the following linear 

MEM: 

 
𝑹𝒆𝒘𝒂𝒓𝒅 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚𝒊𝒋 =  (𝜷𝟎 + 𝒖𝟎𝐣) +

(𝜷𝟏 + 𝒖𝟏𝐣)𝑻𝒓𝒊𝒂𝒍 𝑻𝒚𝒑𝒆 (𝒔𝒕𝒂𝒏𝒅 𝒗𝒔. 𝒔𝒊𝒕)𝒊𝒋 +

(𝜷𝟐 +
𝒖𝟐𝐣)𝑹𝒆𝒘𝒂𝒓𝒅 (𝒏𝒐 𝒓𝒆𝒘𝒂𝒓𝒅 𝒗𝒔. 𝒓𝒆𝒘𝒂𝒓𝒅)𝒊𝒋 +

(𝜷𝟑+ 𝒖𝟑𝐣)𝑬𝒏𝒆𝒓𝒈𝒚 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒊𝒋 +

 𝜷𝟒𝑻𝒓𝒊𝒂𝒍 𝑻𝒚𝒑𝒆𝒊𝒋 × 𝑹𝒆𝒘𝒂𝒓𝒅𝒊𝒋 +

𝜷𝟓𝑻𝒓𝒊𝒂𝒍 𝑻𝒚𝒑𝒆𝒊𝒋 ×

𝑬𝒏𝒆𝒓𝒈𝒚 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒊𝒋 +

 𝜷𝟔𝑹𝒆𝒘𝒂𝒓𝒅𝒊𝒋 ×

𝑬𝒏𝒆𝒓𝒈𝒚 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒊𝒋 +

 𝜷𝟕𝑻𝒓𝒊𝒂𝒍 𝑻𝒚𝒑𝒆𝒊𝒋 × 𝑹𝒆𝒘𝒂𝒓𝒅𝒊𝒋 ×

𝑬𝒏𝒆𝒓𝒈𝒚 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒊𝒋 + 𝝐𝒊𝒋  

 

 

 

(2

) 

 

where 𝑅𝑒𝑤𝑎𝑟𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗  is the participant’s reward 

positivity in condition i, 𝛽0  to 𝛽7  are the fixed effect 

coefficients, 𝑢0j  to 𝑢3j  are the random effects for 

participant j (random intercepts and slopes), 

𝜖𝑖𝑗  is the error term, 𝑢1j , 𝑢2j,  𝑢3j , and 𝜖𝑖𝑗   are Gaussian 

and independent, Energy Expenditure is the score on typical 
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MVPA, today MVPA, and study energy expenditure for 

model 2.1, 2.2, and 2.3, respectively. 

 

H3 was tested with the following logistic MEM: 

 
𝒍𝒐𝒈𝒊𝒕(𝑬𝒋(𝑺𝒕𝒊𝒎𝒖𝒍𝒖𝒔 𝑪𝒉𝒐𝒔𝒆𝒏𝒊𝒋))

=  𝜷𝟎 + (𝜷𝟏

+ 𝒖𝟏𝒋) 𝑻𝒓𝒊𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓𝒊𝒋 + 𝒖𝟎𝒋 

 

(3) 

 

where Stimulus Chosen is the stimulus chosen by the jth 

participant on trial i, 𝐸j is the conditional expectation, 

𝛽0 and 𝛽1 are the fixed effect coefficients, 𝑢0j and 𝑢1j 

are the random intercepts and slopes for the jth 

participant and are Gaussian and independent. 

 

H4 was tested with the following logistic MEM: 

 
𝒍𝒐𝒈𝒊𝒕(𝑬𝒋(𝑪𝒉𝒂𝒏𝒈𝒆𝒅 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆𝒊𝒋)) =

 𝜷𝟎 + (𝜷𝟏 +
𝒖𝟏𝒋)𝑹𝒆𝒘𝒂𝒓𝒅 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚𝒊−𝟏𝒋 + 𝒖𝟎𝒋  

 

(4) 

 

where Changed Response is whether the jth participant 

changed their response from trial i -1 to trial i, 𝛽0 and 

𝛽1 are the fixed effect coefficients, 𝑢0j and 𝑢1j are the 

random intercepts for the jth participant and are 

Gaussian and independent. 

 

Several variables were added to determine if they 

explained residual variance. For models 1 and 2, the 

outcome variable, reward positivity, is sensitive to whether 

a reward is predicted on a trial. Although each trial (1, 2, 3, 

etc.), each stimulus chosen (burnt-orange square vs. navy-

blue square), and each type of trial (sit vs. stand) was 

programmed to have 50% chances of resulting in a reward, 

it was possible that rewards occurred more or less 

frequently at times. Thus, we added variables reflecting the 

probability of receiving a reward on the current trial given 

how frequently (1) a reward had been received up to the 

current trial (“reward probability”); (2) a reward had been 

received when choosing a certain stimulus up to the current 

trial (“stimulus reward probability”); and (3) a reward 

had been received on a certain trial type up to the current 

trial (“trial type reward probability”). We also added 

interaction terms between these variables and those in the 

primary models. 

 

For model 3, the choice of the stimulus should also 

be sensitive to reward probability based on the stimuli 

chosen up to the current trial. Therefore, we added stimulus 

reward probability in this model. Stimulus chosen should 

also be sensitive to trial type given the stimulus chosen. 

Although one stimulus was programmed to lead to sit trials 

70% of the time and the other stimulus only 20%, the actual 

difference may have departed from 50% at times. Thus, we 

added a variable reflecting the probability that one stimulus 

led to a sit trial relative to the probability that the other 

stimulus led to a sit trial, up to the current trial (“stimulus 

trial type probability”). We also added interaction terms 

between these variables and those in the primary models. 

For model 4, trial number may have predicted changed 

response, with participants changing their responses less 

often across trials as they learned the stimuli-trial type 

relationship (e.g., Lohse, Miller, Daou, Valerius, & Jones, 

2020). Additionally, trial type (sit vs. stand) on the prior 

trial (“previous trial type”) and reward (reward vs. no-

reward) on the prior trial (“previous reward”) may have 

predicted changed response. We also added interaction 

terms between these variables and those in the primary 

models. 

Non-Registered Analyses 

Non-registered analyses using data from 

questionnaire responses were conducted to determine 

whether independent variables that have been shown, or 

could reasonably be expected, to be related to physical 

activity or sedentary behavior could contribute to 

explaining the variability in the following dependent 

variables: (i) reward positivity, (ii) the probability of 

choosing the stimulus with a higher probability of sitting, 

and (iii) the probability of changing the chosen stimulus 

compared to the previous trial. The independent variables 

examined in these exploratory analyses were age (Cheval et 

al., 2018c), gender (Chalabaev et al., 2022), body mass 

index (BMI; computed from height and weight) (Cheval et 

al., 2018c; Klimentidis et al., 2018), typical sitting time 

(Craig et al., 2003), exercise dependence (Hausenblas & 

Symons Downs, 2002), affective attitudes toward exercise 

(Farajzadeh et al., 2023; Rhodes & Kates, 2015), 

instrumental attitudes toward exercise (Rollo, Gaston, & 

Prapavessis, 2016), fatigue (Multidimensional Fatigue 

Inventory [Smets et al., 1995] as well as pre- and post-task 

custom questions), IPAQ scores ranked by quartiles 

(Sagelv et al., 2020), rating of perceived exertion associated 

with retrieving coins on sit reward trials and stand reward 

trials, preference for the sit vs. stand trials, and awareness 

about the fact that one stimulus led to a higher probability 

of stand (vs. sit) trials relative to the other stimulus. 

 

When estimating the effect on reward positivity (i), 

we tested the interaction between reward, type of stimulus, 

and each independent variable in models that accounted for 

the random effect of trial type and reward (reward vs. no 

reward) at the participant level. When estimating the effect 

on the probability of choosing the stimulus with the higher 

probability of sitting (ii), we tested the interaction between 

trial number and each independent variable in models that 

accounted for the random effect of trial at the participant 

level. When estimating the effect on the probability of 
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changing chosen stimulus (iii), we tested the interaction 

between reward positivity and each independent variable in 

models that accounted for the random effect of reward 

positivity at the participant level. 

 

Pilot Study 

After conducting several preliminary pilot studies 

aiming to refine the paradigm (e.g., number of trials, 

probabilities that each stimulus leads to a sit trial), we 

conducted our main pilot study with two objectives. First, 

we sought to determine whether we could observe a reward 

positivity in our data that could potentially be moderated by 

trial type. Such effect would be observed if there was a 
frontocentral positive deflection in the ERP time-locked to 

feedback onset for reward trials in comparison to no-reward 

trials. Second, we sought to determine whether the rating of 

perceived exertion (Borg, 1982) was lower for trials in 

which participants sat to retrieve rewards versus squatted to 

retrieve rewards. No persistent movement artifact was 

observed in the segments of pilot EEG data from which the 

reward positivity was extracted (i.e., the data time-locked to 

feedback presentation). This was expected because 

participants were motionless when feedback was presented. 

Additionally, despite participants squatting, no sweat 

artifact was observed in the pilot EEG data, which was 

expected because the testing room temperature was kept at 

20°C. The pilot data informed the sample size calculation, 

which was conducted with a simulation informed by the 

data (see 2.2 Sample Size Calculation). Regarding the 

number of trials for each condition, the medians were as 

follows: sit reward: 36.5 (minimum = 24), sit no-reward: 

32.5 (minimum = 26), stand reward: 39 (minimum = 30), 

and stand no-reward: 39 (minimum = 29). 
 

Pilot Population 

We recruited nine participants from the College of 

Education Research Participant Pool at Auburn University 

(USA) (5 males; age = 21.2 ± 1.2 years, BMI = 24.7 ± 4.8 

kg/m2, mean ± SD). We determined seven participants 

were required to detect a main effect of reward, based on an 

effect size observed in our past research (Meadows, Gable, 

Lohse, & Miller, 2016), but chose to recruit at least eight 

participants in case of data loss due to poor EEG recording, 

which did occur for one participant. 
 

Pilot Results 

ERP waveforms and scalp topographies for the 

pilot data are depicted in Supplemental Figure 1. The figure 

suggested that we were able to obtain clean data, which was 

further evidenced by the fact that we lost only 11.4% (SD = 

10.8%) of trials per participant due to artifacts in the EEG. 

As expected, a 2 (Trial Type: Sit vs. Stand) x 2 (Reward: 

Reward vs. No-Reward) repeated-measures ANOVA 

revealed a main effect of reward, F(1, 7) = 16.2, p = .005, f 

= 1.52, such that reward positivity was larger for reward 

trials (M = 11.8 µV, SD = 8.48 µV) than no-reward trials 

(M = 5.51 µV, SD = 5.86 µV). The Trial Type x Reward 

interaction was F(1, 7) = 1.86, p = .215, f = .516, and the 

main effect of trial type was F(1, 7) = 0.851, p = .387, f = 

.348. Regarding the second objective of the pilot data, as 

expected, a paired-sample t-test revealed that rating of 

perceived exertion was lower when retrieving rewards on 

sit trials (M = 7.33, SD = 1.41) than stand trials (M = 11.1, 

SD = 2.20), t(8) = 4.09, p = .004, d = 1.36. The primary 

statistical models were also tested with the pilot study data 

and results shown in Supplemental Table 2, 3, and 4. 

 

Table 1. Sample description. Note. BMI = body mass index: 

95% CI = 95% confidence intervals. Reliability estimates were 

computed using the ERP Reliability Analysis (ERA) Toolbox 

(v0.5.2; 1000 iterations), which uses generalizability theory 

(Clayson & Miller, 2017a).  
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Results 

All the models can be tested using the data and R 

code available in a public repository (Parma et al., 2023). In 

lieu of a laboratory log, readers can note the data of each 

data collection by viewing the log files at this repository. 

MEM do not require Gaussianity of the dependent and 

independent variables, but of the residuals and of the 

random effects, which can be checked only after a model 

has been fitted. Accordingly, results in the main text reflect 

the initial results, except in the few cases where results 

changed with transformed variables. In these cases, the 

main text shows results based on transformed variables. For 

transparency, complete results based on non-transformed 

variables can be found in Table 2 and those based on 

transformed variables can be found in Supplementary Table 

5. 
 

Since outliers have an influence on the choice of 

the best transformation made by the traditional Box-Cox 

likelihood-based transformation, this method may not 

always provide the correct transformation. Therefore, when 

the Box-Cox transformation did not visually improve the 

distribution of the variable, other transformations were 

tested. 

 

All independent variables treated as continuous 

(i.e., trial, typical MVPA, today MVPA, study energy 

expenditure, reward probability, stimulus reward 

probability, trial type reward probability, typical sitting 

time, exercise dependence, affective attitudes, instrumental 

attitudes, fatigue, rating of perceived exertion, awareness) 

were standardized to facilitate interpretation and to simplify 

the random structure. Standardization was conducted using 

the scale() function in the R base package (R Core Team, 

2021). Thus, all the continuous independent variables 

included in the models have a mean of zero and a standard 

deviation of one. 

 

Since the dependent variables were not 

standardized, the b-values reported in the results can be 

interpreted as follows: If the b-value is positive, then for 

each one-standard-deviation increase in the independent 

variable, the dependent variable increases by the value of 

the b coefficient. This strategy was chosen to facilitate 

comparison of the effects of the independent variables, to 

reduce potential multicollinearity problems, and to improve 

model convergence. 

 

Descriptive Statistics 

Table 1 shows the characteristics of the 

participants. Sixty-four participants began the study, but the 

final sample included 58 participants (30 women; mean age 

20.5 ± 1.1 years; mean body mass index 25.6 ± 3.9 kg/m2), 

two of whom had their EEG data discarded due to excessive 

artifact. Six participants did not complete the study due to 

experiment equipment failure or not meeting the minimum 

age criterion. The typical level of moderate-to-vigorous 

physical activity was 4396.6 ± 2831.9 MET minutes per 

week, which is above the threshold for a high level of 

physical activity (3000 MET-mins per week) (IPAQ 

Research Committee, 2005). This result is likely due to our 

sample consisting of young adults who were enrolled in 

Auburn University College of Education courses, many of 

which are about exercise science and physical activity. It 

should also be noted that the IPAQ is prone to 

overestimating actual levels of physical activity (e.g., 

Dinger, Behrens, & Han, 2006; Lee, Macfarlane, Lam, & 

Stewart, 2011). The level of moderate to vigorous physical 

activity during the day of the study was 314.4 ± 420.2 MET 

minutes, and the energy expenditure during the study was 

122.3 ± 3.2 METs. The mean rating of perceived exertion 

was 7.4 (± 1.3) for sit trials and 12.5 (± 1.8) for stand trials. 

The mean reward positivity amplitude was of 6.8 µV (± 

4.6), the mean reward positivity amplitude in the no reward 

condition was of 4.6 µV (± 4.6), and the mean reward 

positivity amplitude in the reward condition was of 9.1 µV 

(± 15.1). On average, participants chose the stimulus with 

the higher probability to sit rather than to stand 58% (± 

15%) of the trials. Finally, participants changed the stimulus 

chosen in 38% (± 14%) of the trials. The median number of 

trials per condition were as follows: sit reward = 37 

(minimum = 23), sit no-reward = 40.5 (minimum = 21), 

stand reward = 40 (minimum = 24), and stand no-reward = 

37 (minimum = 21). Other variables that were used for 

exploratory analyses are described in Table 1. 

 

Reward Positivity 

Table 2 and Figure 3 show the results for reward 

positivity as a function of the reward and the type of trial. 

Results showed that reward positivity was larger on reward 

versus no reward trials (b = 2.29; 95% confidence interval 

[95CI] = [1.74; 2.84]; p = 2.0 × 10-11). This result 

demonstrated the presence of a reward positivity that could 

potentially be moderated by other factors, such as trial type. 

Contrary to H1, results showed no evidence of a two-way 

interaction between reward (reward vs. no reward) and the 

type of trial (sit vs stand), suggesting that the effect of 

reward on reward positivity did not significantly vary with 

the type of trial (b = 0.10; 95CI = [-0.18; 0.40]; p = 0.482). 

Contrary to H2.1, H2.2, and H2.3, results showed no 

evidence suggesting that typical MVPA (b = 0.14; 95CI = 

[-0.15; 0.45]; p = 0.338) or the energy expended across the 

task (b = -0.07; 95CI = [-0.37; 0.21]; p = 0.604) moderated 

the interaction effect of reward x type of trial on reward 
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Reward positivity  Without MVPA 

(n = 56) 

With typical MVPA 

(n = 52) 

With today MVPA 

(n = 55) 

With study energy expenditure 

(n = 56)  
b (CI) p b (CI) p b (CI) p b (CI) p 

Fixed Effects 
 

Intercept 6.94 (5.71;8.16) 5.0 × 10-16 7.09 (5.78;8.39) 5.7 × 10-15 7.02 (5.79;8.25) 4.1 × 10-16 6.95 (5.72;8.18) 4.9 × 10-16 

Reward (ref. no reward) 
 

   Reward 2.29 (1.74;2.84) 2.0 × 10-11 2.35 (1.78;2.93) 5.7 × 10-11 0.19 (1.73;2.85) 4.1 × 10-11 2.28 (1.74;2.83) 1.9 × 10-11 

Type of trial (ref. sit)  

   Stand -0.19 (-0.24;0.63) .388 0.20 (-0.25;0.66) .384 1.91 (-0.25;0.64) .398 0.22 (-0.21;0.67) .307 

Reward x Type of trial 0.10 (-0.18;0.40) .482 0.11 (-0.19;0.43) .449 0.08 (-0.21;0.38) .573 0.09 (-0.20;0.39) .531 

Typical level of physical activity  
 

   Typical MVPA    0.33 (-0.95;1.62) .607     

   Typical MVPA x Reward    0.41 (-0.15;0.98) .151     

   Typical MVPA x Type of trials    -0.36 (-0.81;0.09) .119     

   Typical MVPA x Reward x Type of trial   0.14 (-0.15;0.45) .338     

Today level of physical activity   

   Today MVPA      0.56 (-0.65;1.77) .361   

   Today MVPA x Reward      0.21 (-0.34;0.76) .448   

   Today MVPA x Type of trials      -0.12 (-0.56;0.32) .591   

   Today MVPA x Reward x Type of trial     0.38 (0.08;0.68) .012   

Study energy expenditure  

   Study energy expenditure        0.80 (0.51;1.10) 7.1 × 10-8 

   Study energy expenditure x Reward        -0.11 (-0.40;0.17) .445 

   Study energy expenditure x Type of trial        0.03 (-0.25;0.33) .797 

   Study energy expenditure x Reward x Type of trial       -0.07 (-0.37;0.21) .604 

Random Effects 
 

Participants 
 

   Intercept 15.559 16.481 15.066 15.599 

   Reward for subject 5.955 6.019 6.076 5.902 

   Type of trial for subject 2.924 2.899 3.003 2.974 

   Residual 191.342 195.568 193.195 190.664 

 

Table 2. Results of the mixed-effects models predicting reward positivity. Notes. CI = confidence interval at 95%; MVPA = moderate-to-vigorous 

physical activity.  
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Figure 3. ERP waveforms and difference wave 

scalp topographies. Left panel: Grand average 

waveforms by trial type and reward. Right panel: 

Scalp topographies for reward minus no reward 

difference wave (top) and sit minus stand difference 

wave (bottom). Topographies are shown for a 

window that spanned 252 to 292 ms after feedback 

onset, as this was the average timing of the window 

in which reward positivity was analyzed.   

 

positivity. However, in line with H2.2, today 

MVPA moderated this interaction effect of reward 

x type of trial on reward positivity (b = 0.38; 95CI 

= [0.08; 0.683], p = 0.012). Simple analyses further 

showed that when today MVPA was high (+ 1SD), 

the two-way interaction between reward (reward vs. 

no reward) and the type of trial (sit vs. stand) was in 

a different direction (b = 0.47; 95CI = [0.047; 

0.839], p = 0.029) than when today MVPA was low 

(-1 SD) (b = -0.29; 95CI = [-0.723; 0.127], p = 

0.170). Specifically, when today MVPA was high, 

the effect of reward in the seated trial was lower 

than in the stand trial (b = 2.03; 95CI = [1.135; 

2.932], p = 1.97 × 10-5 vs. b = 2.97; 95CI = [2.098; 

3.854], p = 1.6 × 10-9 for sit and standing trials, 

respectively). In contrast, when today MVPA was 

low, the effect of reward in the sit trial was higher 

than in the stand trial (b = 2.37; 95CI = [1.135; 

2.932], p = 8.94 × 10-7 vs. b = 1.78; 95CI = [2.098; 

3.854], p = 1.4 × 10-4 for sit and standing trials, 

respectively). Of note, when today MVPA was 

transformed using the Box Cox transformation, the 

moderation did not stand (b = 0.28; 95CI = [-0.01; 

0.58]; p = 0.061), but it did when a log1000 

transformation that provided a better distribution of 

today MVPA was conducted (b = 0.37; 95CI = 

[0.07; 0.67]; p = 0.014). Since both the analysis with 

non-transformed today MVPA and the analysis 

with transformed MVPA with the better distribution 

(log1000) were significant with a p-value below 

0.02 (p = 0.012 and p = 0.014) and a b-value above 

0.36 (b = 0.38 and b= 0.37), we considered this 

moderation effect in the discussion. However, this 

result should be treated with caution, as the third 

analysis using another, yet less optimal, 

transformation (Box Cox) showed no significant 

effect (p = 0.061), although the b-value was similar 

and in the same direction (b = 0.28). 

 

 
 

Figure 4. Odds Ratio for choosing the stimulus 

that was more likely to lead to sitting (vs. standing) 

as a function of trial number. Notes. Errors bars = 

confidence interval at 95%. Figure shown with 

uncentered Trial Number. 
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Table 3. Results of the mixed effects models 

predicting the probability of choosing the 

stimulus with the higher sitting likelihood. 

Notes. OR = odds ratio. 95 CI = confidence 

interval at 95%. Trial number was centered at the 

middle (i.e., 80th trial) of the task. 

 
 

 

Table 4. Results of the mixed effects models 

predicting the influence of reward positivity 

on the subsequent decision to choose the 

same (vs. different) stimulus. Notes. 95 CI = 

confidence interval at 95%. 

 

Probability of choosing the stimulus with the 
higher sitting likelihood 

Table 3 and Figure 4 show the results for 

the probability of choosing the stimulus that was 

more likely to lead to sitting (vs. standing). 

Consistent with H3, results showed that the 

probability of choosing the stimulus more likely to 

lead to sitting increased as the number of trials 

increased (OR = 0.32; 95CI = [0.16; 0.49], p = 1.0 

× 10-4). For example, at the 20th trial of the task, 

participants odds of choosing the stimulus more 

likely to lead to sitting than standing was not 

significant (OR = 0.99; 95CI = [0.76; 1.30], p = 

0.990), this odd was higher and significant in the 

140th trial of the task (OR = 2.33; 95CI = [1.64; 

3.35], p = 2.0 × 10-6). An exploratory analysis 

showed no evidence of a quadratic effect of trial 

number (OR = -0.006; 95CI = [-0.05; 0.04], p = 

0.813). 

 

Influence of reward positivity on the 
subsequent decision to choose the same (vs. 
different) stimulus 

Table 4 shows the results for influence of 

reward positivity on the subsequent decision about 

whether a participant chose the same or different 

stimulus. Contrary to H4, MEM results showed no 

evidence that the reward positivity in a given trial 

predicted subsequent decision to change (vs. keep) 

the selected stimulus in the subsequent trial. 

 

Sensitivity analyses related to reward positivity 

Overall, results of the sensitivity analyses 

were consistent with those of the main analyses. 

Specifically, for the reward positivity centered on a 

peak between 250 and 350 ms, results showed that 

reward positivity was larger in reward than no 

reward trials (b = 2.25; 95CI = [1.71; 2.79]; p = 2.3 

× 10-11), but this effect was not significantly 

moderated by the type of trial (b = 0.19; 95CI = [-

0.10; 0.49]; p = 0.198). Results showed that reward 

positivity averaged across electrodes Cz, CPz, and 

Pz (and centered on a peak between 230 and 350 

ms) was larger in reward than no reward trials (b = 

2.29; 95CI = [1.68; 2.90]; p = 5.1 × 10-10). 

Moreover, as the significance threshold was set to 

.02, the type of trials did not significantly moderate 

the main effect of reward (b = 0.28; 95CI = [0.01; 

0.56], p = 0.039). As the p-value was significant 

under a less stringent threshold (0.05), we explored 

the simple effects, which confirmed the absence of 

a meaningful moderation pattern as they showed no 

evidence of a difference between stand and sit trials, 

be it in the reward (b = 0.20, 95CI = [-0.28; 0.69], p 

= 0.411) or no reward condition (b = -0.36, 95CI = 

[-0.85; 0.11], p = 0.137). Thus, in line with the main 

analyses, the effect of reward was not significantly 

more pronounced in the sitting vs. standing trials. 

Probability of choosing 

the “sit” stimulus 

(n = 58) 

 
OR (95 CI) p 

Fixed Effects 
  

Intercept 0.42  

(0.20; 0.65) 

1.7 × 10-4 

Trial number 0.32  

(0.16; 0.49) 

1.0 × 10-4 

Random Effects 
  

Participants 
  

   Intercept 0.710 

   Trials number 0.371 

   Corr.  

   (Intercept, trial number) 

0.30 

Probability of changing of 

stimulus 

(n = 56) 

 
b (95CI) p 

Fixed Effects 
  

Intercept -0.51  

(-0.70; -0.31) 

1.4 × 10-7 

Reward positivity preceding 

trial 

-0.001  

(-0.005; 0.001) 

.301 

Random Effects 
  

Participants 
  

   Intercept 0.490 

   Reward positivity preceding trial 2.9 × 10-5 

   Corr.  

   (Intercept, trial number) 

-0.47 
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Secondary analyses 

Reward Positivity 

As registered, we tested whether the 

frequency a reward had been received (1) up to the 

current trial, (2) when choosing a certain stimulus 

up to the current trial, and (3) on a certain trial type 

up to the current trial explained residual variance. 

For the frequency related to the type of stimulus or 

the type of trial, we built two indicators. The 

indicator related to the type of stimulus contrasted 

the probability of obtaining a reward when choosing 

the stimulus with the higher probability to sit minus 

the probability of obtaining a reward when choosing 

the stimulus with the higher probability to stand. A 

higher value indicates a higher reward probability 

for the sit relative to the stand stimulus. Likewise, 

for the frequency related to the type of trial, we built 

a variable contrasting the probability of obtaining a 

reward following sit trials minus the probability of 

obtaining a reward following stand trials. A higher 

value indicates a higher reward probability for the 

sit relative to the stand trials. 

 

Results testing each indicator separately 

showed no evidence that the indicator related to 

reward probability (b = -0.20; 95CI = [-0.50; 0.08]; 

p = 0.172), reward frequency associated to the type 

of stimulus (b = -0.001; 95CI = [-0.30; 0.29]; p = 

0.992), or reward frequency associated to the type 

of trial (b = 0.09; 95CI = [-0.20; 0.39]; p = 0.526) 

moderated the two-way interaction between reward 

and the type of trial. 
 

Reward Positivity 

As registered, for the model testing the 

probability of choosing the stimulus more likely to 

lead to sitting than standing, we built a variable 

reflecting the probability that the stimulus with the 

higher sit probability led to a sit trial relative to the 

probability that the other stimulus, with the higher 

stand probability, led to a sit trial, up to the current 

trial. Specifically, this variable (stimulus trial type 

probability) as well as its interaction with the 

number of trials were included in the model. 

Consistent with the main analyses, results showed 

that the probability of choosing the stimulus more 

likely to lead to sitting than standing increased as 

the number of trials increased (OR = 0.30; 95CI = 

[0.15; 0.46], p = 6.3 × 10-5). However, and based 

on a stringent alpha level (i.e., .02), we found no 

statistically significant evidence that the actual 

probability to sit affected the probability of 

choosing the sit stimulus relative to the stand 

stimulus (OR = 0.18; 95CI = [0.01; 0.34], p = 0.029) 

or interacted with the number of trials (OR = 0.08; 

95CI = [-0.03; 0.19], p = 0.152). Because a less 

stringent statistical threshold (0.05) would have 

suggested a positive relationship between the 

Figure 5. Odds for choosing the sit stimulus as a function of the probability that the stimulus leads to a 

stand or a sit trial (A) and odds for changing of stimulus as a function of choice on the previous trial (B). 

Notes. Error bars and blue area = confidence interval at 95%. The results illustrated in Figure 5A should be 

considered with caution as the p value (p = 0.029) was above the alpha level of the study (0.02). 
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probability to sit and the probability of choosing the 

sit stimulus, this relationship is illustrated in Figure 

5A. 

Influence of the reward positivity and the 

subsequent stimulus choice 

As registered, for the model testing the 

influence of reward positivity on the subsequent 

decision about whether a participant chose the same 

or different stimulus, we added in separate models 

the previous trial type and the probability of reward 

up to the current trial, as well as their interactions 

with the number of trials. In the model adjusting for 

the previous trial type, results showed that the 

probability of changing of stimulus was higher 

when the previous trial was a stand trial relative to a 

sit trial (OR = 0.35; 95CI = [0.26; 0.44], p = 4.8 × 

10-14) (Figure 5B). However, results showed no 

evidence of an association between reward 

positivity and the probability of changing stimulus 

(OR = -0.07; 95CI = [-0.14; 0.001], p = 0.052). The 

two-way interaction between previous reward 

positivity and previous trial type was not significant 

(OR = 0.07; 95CI = [-0.01; 0.16], p = 0.122). In the 

model adjusting for the probability of reward up to 

the current trial, no main or interactive effects were 

observed (ps > 0.196). 

 

Non-Registered Analyses 

None of the exploratory analyses showed 

significant main or interactive effects on reward 

positivity. The main effect of typical physical 

activity ranked by quartiles (OR = -0.22; 95CI = [-

0.41; -0.03], p = 0.019) and the interaction effect 

between trial and awareness of the experimental 

manipulation (OR = 0.25; 95CI = [0.10; 0.40], p = 

7.4 × 10-4) were the only significant effects on the 

probability of choosing the stimulus with the higher 

probability of sitting. Importantly, in the latter 

model, the main effect of trial remained significant 

(OR = 0.32; 95CI = [0.17; 0.47], p = 1.9 × 10-5). 

The main effect of preference for the sit vs. stand 

trials (OR = -1.70; 95CI = [-3.13; -0.28], p = 0.017) 

and awareness (OR = -0.21; 95CI = [-0.39; -0.03], 

p = 0.017) as well as the interaction effect between 

reward positivity and typical physical activity 

ranked by quartiles (OR = -0.05; 95CI = [-0.10; -
0.01], p = 0.009) were the only significant effects on 

the change in chosen stimulus. The simple effects of 

the latter 2-way interaction showed that higher 

reward positivity was significantly associated with 

a lower probability of changing the stimulus chosen 

but only among individuals in the highest quartile 

(Q4: OR = 0.88; 95CI = [0.81; 0.96], p = 0.004). In 

the lower quartiles, the effect of reward positivity on 

the probability of changing the stimulus chosen was 

not significant (for Q1: OR = 1.05; 95CI = [0.96; 

1.29], p = 0.215; for Q2: OR = 0.99; 95CI = [0.94; 

1.05], p = 0.855; for Q3: OR = 0.93; 95CI = [0.88; 

0.99], p = 0.025). 

 

Discussion 

The theory of effort minimization in 

physical activity (TEMPA) suggests that sedentary 

behaviors are rewarding (Cheval & Boisgontier, 

2021; Cheval et al., 2018a). However, direct 

evidence supporting its rewarding value is lacking. 

Here, the objective of this registered report was to 

test whether sedentary behaviors (i.e., retrieving a 

reward while sitting down) evoke reward-related 

brain activity (reward positivity), and whether this 

effect is moderated by factors related to energy 

expenditure (typical physical activity, physical 

activity on the day of the study, physical activity 

during the experiment). Moreover, based on 

reinforcement learning theory (Sutton & Barto, 

2018), we tested whether decisions leading to 

sedentary behaviors are “learned” (i.e., participants 

learned to choose a stimulus likely to lead to sitting 

down), and whether reward positivity is linked to 

subsequent decisions (i.e., whether reward 

positivity associated with sitting down after 

choosing a stimulus increased the likelihood of 

choosing the same stimulus).  

 

At the neural level, results showed that 

reward positivity was larger on reward versus no-

reward trials, thereby confirming the validity of the 

experimental procedure we used to evoke reward-

related brain activity. However, contrary to our 

main hypothesis, we found no evidence that this 

reward positivity effect was significantly moderated 

by the type of trial (sit vs. stand). At the behavioral 

level, results showed that the probability of 

choosing the stimulus more likely to lead to sitting 

than standing and squatting increased when the 

number of trials increased. In addition, participants 
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were more likely to change the selected stimulus if 

the stimulus they chose on the previous trial led to a 

stand (vs. a sit) trial. Hence, in line with the theory 

of effort minimization in physical activity, and 

consistent with sitting serving as a reward in 

reinforcement learning, our study confirms that 

people choose the options associated with the least 

effort. Yet, our results showed no evidence 

suggesting this behavioral pattern could be 

explained by the reward positivity. Likewise, we 

found no evidence suggesting that typical physical 

activity, physical activity on the day of the study, or 

physical activity during the experiment influenced 

reward positivity.  

  

Several factors can explain why sitting 

reward trials did not lead to larger reward positivity 

than standing reward trials. First, our paradigm 

crossing a doors task (Hassall et al., 2019) with a 

movement-incentive delay task (Cheval et al., 2019) 

may not be suitable for measuring the rewarding 

value of sedentary behaviors. In particular, a 

process of justification of effort, “a form of 

cognitive dissonance in which one gives greater 

value to outcomes that require greater effort to 

obtain, to justify the greater effort” (Aronson & 

Mills, 1959), may explain why trials associated with 

standing (vs. sitting) were not processed as less 

rewarding in our paradigm. Indeed, in our task, 

participants already knew that they would have to 

expend energy (i.e., to stand and squat) if they 

earned a reward (see Figure 2, column 4) before 

finding out whether they indeed received the reward 

(see Figure 2, column 6). Accordingly, after 

learning that they would have to expend energy to 

retrieve the reward, participants may have raised the 

rewarding value of the energy expenditure, midtrial, 

through a process of justification of effort 

(Alessandri, Darcheville, & Zentall, 2008) before 

finding out whether they would have to actually 

expend energy to retrieve the reward, which was 

when the reward positivity was measured.  

 

At the theoretical level, an evolutionary 

account of human behavior can largely explain this 

process of effort justification. Specifically, since 

people minimize unnecessary energy expenditure, 

investing effort into a given behavior should be 

justified by a reward that is worth the investment. 

As such, through a rationalization mechanism 

aiming to reduce the risk for cognitive dissonance, 

a conflict that occurs when beliefs do not line up 

with behaviors, people may increase the value of a 

reward associated with a behavior as soon as they 

engage in this behavior. Of note, this mechanism is 

not unique to physical effort and can be extended to 

other costs, such as the money invested in an object 

(e.g., wine) (Schmidt, Skvortsova, Kullen, Weber, 

& Plassmann, 2017). 

 

Noteworthy, for physical effort at least, this 

reasoning highlights the need to dissociate the 

mechanisms associated with the anticipation phase 

(i.e., the incentive value of a given potential reward) 

from those associated with the consummatory phase 

(i.e., the rewarding activity while the reward is 

obtained) (Novak & Foti, 2015). In other words, the 

effect of physical effort intensity on the reward 

associated with this effort during the anticipation 

phase (i.e., negative relationship) could be different 

from its effect during the consummatory phase (i.e., 

positive relationship). While people typically 

behave in a way that minimizes effort (Klein-

Flügge et al., 2016; Prévost, et al., 2010; Skvortsova 

et al., 2014) – which confirms that effort is 

essentially processed as a cost and as an aversive 

experience to avoid –, once they engage in an 

effortful behavior, the subjective value of the 

behavior becomes higher through this effort 

justification to reduce cognitive dissonance (“I have 

engaged a lot of effort in this behavior, but it is not 

worth the effort” vs. “I have engaged a lot of effort 

in this behavior, and it was worthwhile”). For 

example, in the study by Palidis and Gribble (2020), 

reward-related brain activity was greater when 

participants received reward feedback on high-

effort trials, an observation aligned with other 

studies showing that individuals value rewards 

obtained during high effort more those obtained 

during low effort (Inzlicht et al., 2018). In sum, the 

more a behavior involves effort, the less people are 

likely to engage in it, but, paradoxically, once 

people are committed to the effort, the more this 

effortful behavior is valued. Thus, physical effort 

can be avoided (anticipation phase) or valued 

(consummatory phase), depending on the behavior 

phase. The observation that the effect of reward in 

the stand trials (vs. sit trials) was higher when today 

MVPA was high was consistent with this reasoning. 

Indeed, when people already engaged in physical 

activity on the day of the study, the standing trials 

may be perceived as more effortful, thereby 
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potentially explaining the higher rewarding value of 

such trials via the effort justification process. 

 

Second, EEG primarily records cortical 

activity (Krishnaswamy, Obregon-Henao, 

Ahveninen, et al., 2017). Yet, it is possible that the 

brain regions underpinning the rewarding value of 

sedentary behaviors are subcortical and not 

accessible by EEG. For example, regions typically 

involved in reward processing, such as amygdala, 

nucleus accumbens, and the ventral striatum (Corbit 

& Balleine, 2011; Gottfried, O'Doherty, & Dolan 

2003; Knutson, Adams, Fong, & Hommer, 2001; 

Prévost, Liljeholm, Tyszka, & O'Doherty, 2012; 

Roesch & Olson, 2004; Schultz, Tremblay, & 

Hollerman, 2000), may not be reflected in EEG. 

However, it is important to note that combined 

ERP-functional magnetic resonance imagining 

(fMRI) research has shown that the blood-oxygen-

level-dependent signal in the ventral striatum is 

correlated with the amplitude of the reward 

positivity, and EEG source localization analysis 

suggests the striatum may be the neural generator of 

the reward positivity (Carlson et al., 2011; Foti et 

al., 2011). Thus, variations in reward positivity 

amplitude may correspond with changes in the 

activation of subcortical regions associated with 

reward processing, providing indirect measures of 

subcortical activities involved in reward processing. 

Nonetheless, future studies using fMRI, possibility 

in conjunction with EEG, could be useful to 

measure the subcortical regions that may process 

the rewarding value of sedentary behaviors. 

Another avenue for future research may involve 

examining the role of ERP components other than 

the reward positivity in processing the rewarding 

value of sedentary behaviors and influencing the 

likelihood of choosing stimuli associated with such 

behaviors. For example, Meadows et al. (2016) 

found the P3b ERP component was sensitive to 

reward value, and Fischer and Ullsperger (2013) 

observed the P3b predicted future choices in an 

experimental task. Notably, in the present study, the 

P3b seems sensitive to reward feedback, with 

reward trials exhibiting higher amplitude over 

parietal cortex than no reward trials (Figure 3). 

  

At the behavioral level, results showing 

that the probability of choosing the stimulus more 

likely to lead to sitting than standing increased as 

the number of trials increased was consistent with 

existing literature, the theory of effort minimization 

in physical activity, and the corollary that decisions 

leading to sedentary behaviors are reinforced 

(Cheval et al., 2018a; Cheval & Boisgontier, 2021). 

Experimental works have shown that humans favor 

lower rather than higher effort, everything else 

being equal (Prévost et al., 2010; Skvortsova et al., 

2014; Klein-Flügge et al., 2016; Palidis & Gribble, 

2020). For example, findings have robustly 

confirmed that humans process physical effort as a 

cost in decision-making tasks and minimize the 

physical effort required to obtain a specific reward 

(Prévost et al., 2010; Skvortsova et al., 2014; Klein-

Flügge et al., 2016; Bernacer et al., 2019). 

Morevoer, from a health psychology perspective, 

our current behavioral findings are consistent with 

the observation that sedentary-related stimuli act as 

temptations (Cheval et al., 2017), and that not 

engaging in such behaviors require higher 

inhibitory and cognitive function (Cheval et al., 

2020a; Cheval et al., 2020c). In sum, the current 

study provides additional behavioral evidence, 

based a whole-body exercise task, that individuals 

favor the behavioral alternative associated with the 

least effort.  

  

Regarding the secondary analyses, tests 

focusing on the neural outcomes showed no 

evidence that the frequency at which a reward has 

been received 1) up to the current trial, 2) when 

choosing a certain stimulus up to the current trial, or 

3) on a certain trial type up to the current trial were 

related to the reward positivity or moderated the 

effect of reward depending on the type of trial. 

Analyses focusing on behavioral outcomes showed 

that the probability of changing the selected 

stimulus was higher when the previous trial was a 

stand trial relative to a sit trial. This finding was 

consistent with some empirical studies (Palidis & 

Gribble, 2020). For example, in the study by Palidis 

and Gribble (2020), results showed participants 

were more likely to change their response from the 

previous trial if it led to high effort. Morevoer, 

although not significant based on the stringent alpha 

level required by the current journal (i.e., p < .02), 

participants were more likely to choose the sit 

stimulus when the actual probability of this stimulus 

leading to a sit trial was relatively high (p = 0.029). 

If this finding would have been considered 

significant, it would have provided additional 
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evidence that people tend to behave in a way that 

maximizes the probability to conserve energy. 

  

Regarding the non-registered analyses, if 

our alpha level would have been less stringent (e.g., 

0.05), our results would have suggested that 

stronger affective attitudes toward physical activity 

reduced the probability of choosing the sit (vs. 

stand) stimulus (p= 0.044), and that higher 

perceived exertion associated with the stand trials 

(i.e., higher pecevied effort for the squats) was 

associated with an increased probability of choosing 

the sit (vs. stand) stimulus (p = 0.033). Although not 

planned and above the stringent significance 

threshold, these findings are consistent with the 

existing literature – improved affective experience 

associated with physical activity should favor 

engagement in physically active behaviors 

(Maltagliati, Sarrazin, Fessler, Lebreton, & Cheval, 

2022). Finally, results revealed that the increased 

probability of choosing the stimulus more likely to 

lead to sitting than standing as a function of trial 

number was more pronounced in people who were 

aware that one stimulus led to more sit than stand 

trials compared to the other stimulus. Notably, the 

main effect of trial number was significant even 

after accounting for this awareness. Thus, this effect 

was observed even in people who were unaware 

that their decisions were influencing their energy 

expenditure. That is, the selection of the behavioral 

option minimizing effort can also take place at a 

rather automatic, unconscious level. 

 

Limitations & Strengths 

The present study has some limitations. 

First, as explained above, the used paradigm may 

have confounded the potential devaluation of the 

reward by the physical effort to obtain it because of 

a process of effort justification. To reduce the risk 

of this potential confounding, future studies need to 

disentangle the effect of effort at different stages of 

the decision process: before (i.e., effort avoidance), 

during (i.e., effort minimization), and after (i.e., 

effort justification) physical activity behavior. Such 

a design may allow for disentangling the differential 

effects of effort across stages of behavioral 

regulation, thus allowing for a more nuanced and 

accurate assessment of the effects of effort and 

reward processing. Second, while EEG provides an 

advantage over other brain imaging techniques in 

terms of temporal resolution, which was essential in 

our study, the use of this technique may have 

precluded accurate assessment of subcortical brain 

regions that may process the rewarding value of 

sedentary behaviors as EEG primarily records 

cortical activity (Krishnaswamy et al., 2017). 

Studies based on another non-invasive brain 

imaging technique, magnetic resonance imaging 

(MRI), can overcome this limitation and provide 

images with higher spatial resolution, but lower 

temporal resolution. Third, typical levels of 

physical activity were assessed using a self-report 

questionnaire, which may not accurately capture the 

actual levels of physical activity, as correlations 

between self-report and direct measures of physical 

activity are low to moderate (Lee et al., 2011; Prince 

et al., 2008). Assessment of usual physical activity 

using device-based measures, such as 

accelerometers, would have provided more reliable 

and valid information, as they have shown greater 

validity and reliability than self-report measures 

(Dowd et al., 2018). Fourth, the sample was young, 

healthy, and physically active, which may have 

biased the current results as this population is likely 

to be less attracted toward effort minimization than 

adults who are older, more sedentary adults, or 

adults with a health condition, as the latter 

populations’ perception of the same level of effort 

is likely higher than the former population’s due to 

greater fatigability (LaSorda et al., 2020) or 

chronical pain (Shupler, Kramer, Cragg, Jutzeler, 

&Whitehurst, 2019). Therefore, energy-minimizing 

behaviors are more likely to elicit reward-related 

brain activity in older, more sedentary, and/or less-

healthy adults. 

Yet, these limitations are counterbalanced 

by several strengths. First, the current study is a 

registered report, a format that has been encouraged 

to reduce the risk for questionable research practices 

(Caldwell et al., 2020; Boisgontier, 2022). Second, 

our results relied on a stringent alpha level (.02) and 

our statistical power was high (beta = .90), 

including over 60 participants. Third, we used a 

statistical approach (i.e., mixed-effects models) that 

limits information loss (Boisgontier & Cheval, 

2016; Lachaud & Renaud, 2011). 
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Conclusion 

This registered report showed evidence 

that people behave in the way that minimizes the 

effort to invest in the task to obtain the reward, 

consistent with the theory that opportunities to 

minimize energy expenditure are rewarding. 

However, we found no evidence that reward-related 

brain activity underlies these behavioral 

manifestations. Future studies using other EEG 

paradigms or relying on other methodologies (e.g., 

magnetic resonance imaging) are warranted to 

better capture the neural mechanisms at works. 
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Data & Code Availability 

The data, materials and code are available at: 
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al., 2023).  
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Appendix A: Task instructions read to participants 1 

“To start each trial, press the bottom (A) button. Each trial begins with a burnt-orange and a navy-blue square. 2 

Select which color square you want to choose by pressing the left (X) button or the right (B) button. So, on this 3 

trial, if you choose the burnt-orange square, you would press the ____ button. If you choose the navy-blue square, 4 

you would press the _____ button. YOU SHOULD FOCUS ON SELECTING A SQUARE BASED ON 5 

COLOR, NOT BASED ON LOCATION. In other words, select a square because it is burnt-orange or navy-6 

blue, not because it is on the left or right. After making your selection, you will see a stimulus indicating whether 7 

you will retrieve your reward from the upper or lower container, if you win a reward. If you see a stimulus with 8 

the container on the upper line, then you will be retrieving your reward from the upper container. If you see a 9 

stimulus with the container on the lower line, then you will be retrieving your reward from the lower container. 10 

Next, you will see if you actually won a reward or not. If you see a dollar sign, then you won a reward. If you 11 

see a zero, then you did not win a reward. If you win a reward from the upper container, then you will wait until 12 

you hear a tone. When you hear a tone, you will take a coin from the upper container, touch your butt to the 13 

chair, then place the coin in the upper collection container. You will repeat this sequence four more times when 14 

prompted by a tone. If you win a reward from the lower container, then you will wait until you hear a tone. When 15 

you hear a tone, you will sit down in the chair and take a coin from the lower container, then place the coin in 16 

the lower collection container. You will remain seated and reach into the lower container to retrieve a coin each 17 

time you hear a tone (you will hear four more tones). When you are prompted to start the next trial, return to a 18 

standing position. If you get feedback that indicates a zero instead of a dollar sign, then simply remain standing. 19 

Each coin represents a raffle ticket to win $10, so the more coins you earn, the more likely you are to win $10. 20 

On each trial, a certain color square will give you a certain probability of winning, so, again, FOCUS ON 21 

CHOOSING A SQUARE BASED ON COLOR. However, there is no strategy for selecting a color square in 22 

order to win. In other words, there is no pattern as to which color square will give you the best chance at winning 23 

from trial to trial.”24 
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Appendix B: Fatigue Questions 

1. Right now, how fatigued are you? 

0 1 2 3 4 5 6 7 8 9 10 

      Not At All                 Very Much 

 

2. Right now, I have no energy 

0 1 2 3 4 5 6 7 8 9 10 

            Completely Disagree                                Completely Agree 

 

3. Right now, I feel physically exhausted 

0 1 2 3 4 5 6 7 8 9 10 

           Completely Disagree                                Completely Agree  
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Supplementary Figure 1. ERP waveforms and scalp topographies for the pilot data 

 

 
Notes. Left panel: Grand average waveforms by trial type and reward from pilot study. Right panel: 

Scalp topographies for reward and no reward trials, both averaged across trial type.
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Supplementary Table 1. 
 Factors Design Formal test 

Primary Hypothesis 

H1: Larger reward positivity for opportunities to sit 
Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) 

Within-subjects Significant interaction between the within factors 

Secondary Hypotheses 

H2.1: The larger reward positivity for opportunities to sit is more 
pronounced in participants who are typically less physically active. 

Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) 
Between: Energy expenditure (typical MVPA; continuous) 

Mixed-subjects Significant 3-way within-between interaction 

H2.2: The larger reward positivity for opportunities to sit is more 
pronounced in participants who are more active on the day of the 
experiment. 

Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) 
Between: Energy expenditure (today MVPA; continuous) 

Mixed-subjects Significant 3-way within-between interaction 

H2.3: The larger reward positivity for opportunities to sit is more 
pronounced after energetically demanding behavior during the 
experiment (i.e., squatting). 

Within: Trial Type (stand vs. sit) 
Within: Reward (no reward vs reward) 
Between: Energy expenditure (study energy expenditure; 
continuous) 

Mixed-subjects Significant 3-way within-between interaction 

H3: The probability of choosing the stimulus more likely to lead to 
sitting than standing increases as the number of trials increases. 

Within: Trial number (continuous) Within-subjects 
Significant main effect of trial number on the chosen 
stimulus 

H4: Reward positivity predicts subsequent decision about 
whether a participant chooses the same or different stimulus. 

Within: reward positivity values (continuous) Within-subjects 
Significant main effect of reward positivity on the 
changed response 

Notes. MVPA = Moderate to vigorous physical activity  



 

 

Supplementary Table 2. Pilot estimates of the effects of opportunities to sit on reward positivity and the moderation by energy expenditure 

 
   Opportunities to sit  

(Model 1, 1083 obs.) 
   Typical MVPA  

(Model 2.1, 1083 obs.) 
  Today MVPA  

(Model 2.2, 1083 obs.) 
  Study energy expenditure  

(Model 2.3, 1079 obs.) 
 

Fixed Effects  b SE p   b SE p   b SE p   b SE p  

Intercept  5.378 2.379  0.050 .  5.485 1.964 0.020   5.245   2.353 0.053   5.368  2.376  0.050  

Reward  5.703  0.893 2.5 × 10-10 ***  5.542 0.886 5.9 × 10-10 ***  5.787 0.891 1.3 × 10-10 ***  5.728 0.895 2.3 × 10-10 *** 

Type  0.127 0.922 0.890   0.451 0.919 0.623   0.058 0.922 0.949   0.152 0.926 0.869  
Energy       -3.091 1.859 0.129   2.132 2.276 0.373   0.466 0.648 0.472  
Reward × Type  1.693 1.292 0.190   1.352 1.285 0.293   1.710 1.290 0.185   1.679 1.296 0.195  

Reward × Energy       -1.708 0.884 0.053    -1.461 0.867 0.092 .  -0.353 0.921 0.701  

Type × Energy       2.120 0.926 0.022   -0.173 0.917 0.850   -0.647 0.897 0.470  

Reward × Type × Energy       -2.540 1.305 0.051   -0.605 1.300 0.641   0.070 1.294 0.956  

Random Effect  σ²     σ²     σ²     σ²    

Participant (intercept)  42.15     27.75     40.89     42.00    

Residual  111.81     109.34     110.98     112.00    

Notes. SE = standard error; obs. = observations; MVPA = Moderate-to-vigorous physical activity. No Reward is coded 0 and Reward is coded 1. Type is coded 0 for stand trials and 1 
for sit trials. Here, due to the low sample size of this pilot study, the analyses could not follow the models defined above, some random effects are missing as the analyses 
only included the random intercept of subject. In Stage 2 of the Registered Report, the random intercepts of all factors will be included. In the final manuscript, we will make 
sure to have exactly the same number of observations across models to be able to compare them using BIC. 
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Supplementary Table 3. Pilot estimates of the effect of trial number on the probability of choosing the stimulus more likely to lead to sitting 

than standing. 
 

   Opportunities to sit  
(Model 1, 1083 obs.) 

 

Fixed Effects  b SE p  

Intercept  0.150 0.128  0.241  
Trial  0.112 0.066 0.091  

Random Effects  σ²    

Participant (intercept)  0.114    
Trial  0.059    

Note. SE = standard error; obs. = observations; Choosing the 
stimulus more likely to lead to standing and sitting are coded 
0 and 1, respectively. 



 

 

Supplementary Table 4. Pilot estimate of the effect of previous trial’s reward positivity on whether participant changed response from 

previous trial (0 = did not change; 1 = changed) 
 

   Opportunities to sit  
(Model 1, 980 obs.) 

 

Fixed Effects  b SE p  

Intercept  -0.011 0.061  0.855  
Reward Positivity on previous trial  0.042 0.061 0.486  

Random Effects  σ²    

Participant (intercept)  1 × 10-14    
Reward Positivity on previous trial  0.007    

Note. SE = standard error; obs. = observations; an absence of change and a 
change of response from previous are coded 0 and 1, respectively.  
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Supplemental Table 5. Results of the mixed-effects models predicting reward positivity based on Box-Cox transformed typical moderate-to-vigorous physical 

activity, Box-Cox transformed study-related energy expenditure, and log1000 transformed today moderate-to-vigorous physical activity. 
 

Reward positivity  Without MVPA 

(n = 56) 

With Box-Cox typical MVPA 

(n = 52) 

With log1000 Today MVPA 

(n = 55) 

With Box-Cox Energy 

expenditure 

(n = 56)  
b (CI) p b (CI) p b (CI) p b (CI) p 

Fixed Effects 
 

Intercept 6.94 (5.71;8.16) 5.0 × 10-16 7.08 (5.78;8.39) 6.4 × 10-15 7.02 (5.79;8.25) 4.2 × 10-16 6.95 (5.72;8.18) 4.9 × 10-16 

Reward (ref. no reward) 
 

   Reward 2.29 (1.74;2.84) 2.0 × 10-11 2.35 (1.78;2.93) 6.1 × 10-11 2.29 (1.73;2.84) 3.5 × 10-11 2.29 (1.74;2.83) 1.9 × 10-11 

Type of trial (ref. sit)  

   Stand -0.19 (-0.24;0.63) .388 0.20 (-0.25;0.65) .386 0.19 (-0.25;0.64) .399 0.23 (-0.21;0.67) .304 

Reward x Type of trial 0.10 (-0.18;0.40) .482 0.12 (-0.18;0.43) .437 0.08 (-0.21;0.38) .575 0.09 (-0.20;0.38) .535 

Typical level of physical activity  
 

   Typical MVPA    0.11 (-1.17;1.41) .856     

   Typical MVPA x Reward    0.41 (-0.15;0.97) .152     

   Typical MVPA x Type of trials    -0.40 (-0.85;0.04) .081     

   Typical MVPA x Reward x Type of trial   0.24 (-0.06;0.54) .117     

Today level of physical activity   

   Today MVPA     0.56 (-0.65;1.78) .363   

   Today MVPA x Reward      0.28 (-0.26;0.83) .311   

   Today MVPA x Type of trials      -0.08 (-0.53;0.36) .717   

   Today MVPA x Reward x Type of trial     0.37 (0.07;0.67) .014   

Study energy expenditure  

   Study energy expenditure        0.86 (0.57;1.16) 7.3 × 10-9 

   Study energy expenditure x Reward        -0.09 (-0.39;0.19) .505 

   Study energy expenditure x Type of trial        0.01 (-0.27;0.31) .895 

   Study energy expenditure x Reward x Type of trial       -0.08 (-0.37;0.21) .582 

Random Effects 
 

Participants 
 

   Intercept 15.559 16.632 15.251 15.596 

   Reward for subject 5.955 6.029 5.803 5.893 

   Type of trial for subject 2.924 2.826 3.002 2.985 

   Residual 191.342 195.530 193.270 190.567 

Notes. CI = confidence interval at 95%; MVPA = moderate-to-vigorous physical activity. 
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